ECK Your Understanding #### Examples 1, 2 (p. 130) Write each number in standard form. - 1. 7.32×10^4 - 3. 4.55×10^{-1} - 2. 9.931×10^5 - 4. 6.02×10^{-4} ### Examples 3, 4 (p. 131) Write each number in scientific notation. - 5. 277,000 - **7**. 0.00004955 - 6. 8,785,000,000 - 8. 0.524 ## **Example 5** (p. 131) 9. BASEBALL The table at the right lists five Major League Ballparks. List the ballparks from least to greatest capacity. | Ballpark | To | | |-----------------------------|---------------------|---------------------| | H. H. Metrodome | Team | Capacity | | | Minnesota Twins | 4.8×10^{4} | | Network Associates Coliseum | Oakland Athletics | 4.7×10^{4} | | The Ballpark in Arlington | | | | Wrigley Field | Texas Rangers | 4.9×10^{4} | | | Chicago Cubs | 3.9×10^{4} | | Yankee Stadium | New York Yankees | | | ource: www.users bestwee | Total fork Tallkees | 5.5×10^4 | Source: www.users.bestweb.net ## **Exercises** | For Exercises | See | |---------------|----------| | 10-13 | Examples | | 14-17 | 2 | | 18-21 | 3 | | 22-25 | 4 | | 26-29 | 5 | Write each number in standard form. - **10.** 2.08×10^2 - 11. 3.16×10^3 - 12. 7.113×10^7 - 13. 4.265×10^6 - 14. 7.8×10^{-3} - 15. 1.1×10^{-4} - 16. 8.73×10^{-4} - 17. 2.52×10^{-5} # Write each number in scientific notation. - 18. 6,700 - 19. 43,000 - **22.** 0.037 - **20.** 52,300,000 - 21. 147,000,000 - **23**. 0.0072 - **24**. 0.00000707 - **25.** 0.0000901 26. **CHEMISTY** The table shows the mass in grams of one atom of each of several elements. List the elements in order from the least mass to greatest mass per atom. | Element | Mass per Atom | |----------|------------------------------------| | Carbon | $1.995 \times 10^{-23} \mathrm{g}$ | | Gold | $3.272 \times 10^{-22} \mathrm{g}$ | | Hydrogen | $1.674 \times 10^{-24} \mathrm{g}$ | | Oxygen | $2.658 \times 10^{-23} \mathrm{g}$ | | Silver | $1.792 \times 10^{-22} \mathrm{g}$ | Source: Chemistry: Concepts and Applications 27. **GEOGRAPHY** The areas of the Great Lakes are listed in the table. Order the lakes according to their area from least to greatest. | Great
Lake | Area
(mi²) | |---------------|----------------------| | Erie | 9.91×10^{3} | | Huron | 2.3×10^{4} | | Michigan | 2.23×10^4 | | Ontario | 7.32×10^3 | | Superior | 3.17×10^4 | Source: World Book - **28**. Which is greater: 6.3×10^5 or 7.1×10^4 ? - **29**. Which is less: 4.1×10^3 or 3.2×10^7 ? - 30. **HEALTH** The diameter of a red blood cell is about 7.4×10^{-4} centimeter. Write this number using standard form. - **31**. **TIME** The smallest unit of time is the *yoctosecond*, which equals - 32. **SPACE** The temperature of the Sun varies from 10,900°F on the surface to 27 billion°F at its core. Write these temperatures in scientific notation. - 33. **DINOSAURS** The giganotosaurus weighed about 1.6×10^4 pounds. The microceratops weighed about 1.1×10^{1} . How many times heavier was the giganotosaurus than the microceratops? Write your answer in standard form. Round to the nearest tenth. - 34. NUMBER SENSE Determine whether 1.2×10^5 or 1.2×10^6 is closer to one million. Explain. - 35. **CHALLENGE** Compute and express each value in scientific notation. a. $$\frac{(130,000)(0.0057)}{0.0004}$$ **b.** $$\frac{(90,000)(0.0016)}{(200,000)(30,000)(0.00012)}$$ 36. **WRITING IN MATH** Determine whether a decimal times a power of 10 is sometimes, always, or never expressed in scientific notation. Explain. # PRACTICE ges 700, 729. eck Quiz at roblems nath3.com 7. The distance from Milford to Loveland is 326 kilometers. If there are 1,000 meters in a kilometer, use scientific notation to write the distance from Milford to Loveland in meters. A $$3.26 \times 10^6 \,\mathrm{m}$$ B $$32.6 \times 10^5 \,\mathrm{m}$$ C $$326 \times 10^5 \,\mathrm{m}$$ D $$3.26 \times 10^5 \,\mathrm{m}$$ 38. The average width of a strand of a spider web is 7.0×10^{-6} meter. Which expression represents this number in standard form? # iral Review **LIGEBRA** Evaluate $a^5 \cdot b^2$ if a = 2 and b = 3. (Lesson 2-9) e each equation. Check your solution. (Lesson 2-7) $$+3\frac{1}{3} = 2\frac{1}{2}$$ 41. $$-\frac{2}{3}y = 14$$ 42. $$\frac{p}{1.3} = 2.4$$ 42. $$\frac{p}{1.3} = 2.4$$ 43. $-1\frac{3}{4} = n - 4\frac{1}{6}$ INGUAGE There are about one billion people who speak Mandarin. his is 492 million more than those who speak English. How many eak English? (Lesson 1-1)